Find a degree that fits your goals. Try it risk-free for 30 days. About This Chapter Ways of studying rocks to learn about age and the information gained are targeted by the short and engaging video lessons in this chapter.
Some specific terms you'll see include the geologic time scale, relative dating and radiometric dating. Once you've completed all the lessons, you'll have also seen these topics: Uniformitarianism contrasted with catastrophism The major kinds of radioactive decay Methods of radiometric dating Different fossil preservation circumstances What index fossils are You can examine these fun video lessons from a computer, smartphone or other kind of Internet-ready device.
Content on this site is Creative Commons with Attribution
Test your knowledge with a question chapter practice test. View all practice tests in this course.
The History of Life on Earth: Major Eons, Eras, Periods and Epochs The geologic time scale is an essential tool for understanding the history of Earth and the evolution of life. Theories of Geological Evolution: Catastrophism vs Uniformitarianism Geologists haven't always agreed about the history of our planet. Methods of Geological Dating: Numerical and Relative Dating Learn how scientists determine the ages of rocks and fossils. What is Relative Dating? Principles of Radiometric Dating Radiometric dating is a method used to determine the age of rocks and other materials based on the rate of radioactive decay.
Conditions of Fossil Preservation: Relative Dating with Fossils: Index Fossils as Indicators of Time You may already know how to date a fossil with a rock. Test your knowledge of this chapter with a 30 question practice chapter exam. Other Practice Exams in this course. Test your knowledge of the entire course with a 50 question practice final exam. Earning College Credit Did you know… We have over college courses that prepare you to earn credit by exam that is accepted by over 1, colleges and universities. To learn more, visit our Earning Credit Page Transferring credit to the school of your choice Not sure what college you want to attend yet?
Browse Articles By Category Browse an area of study or degree level.
Activity 8: Application of Relative Dating, Radiometric Dating, and Geologic Time Scale
Browse Browse by subject. What best describes you? Choose one Student Teacher Parent Tutor. What's your main goal? Choose a goal Study for class Earn college credit Research colleges Prepare for an exam Improve my grades Other Choose a goal Supplementing my in-classroom material Assigning my students material Teacher certification exam prep Professional development Other Choose a goal Helping my child with a difficult subject Personal review to better assist my child Improving my child's grades My child is studying for a credit granting exam Just for fun Other.
Your goal is required. Email Email is required. Email is not a valid email. Email already in use. Cancel before and your credit card will not be charged. Your Cart is Empty. Please Choose a Product. The chronostratigraphic scale is an agreed convention, whereas its calibration to linear time is a matter for discovery or estimation.
We can all agree to the extent that scientists agree on anything to the fossil-derived scale, but its correspondence to numbers is a "calibration" process, and we must either make new discoveries to improve that calibration, or estimate as best we can based on the data we have already. To show you how this calibration changes with time, here's a graphic developed from the previous version of The Geologic Time Scale , comparing the absolute ages of the beginning and end of the various periods of the Paleozoic era between and I tip my hat to Chuck Magee for the pointer to this graphic.
Fossils give us this global chronostratigraphic time scale on Earth. On other solid-surfaced worlds -- which I'll call "planets" for brevity, even though I'm including moons and asteroids -- we haven't yet found a single fossil. Something else must serve to establish a relative time sequence. That something else is impact craters.
Earth is an unusual planet in that it doesn't have very many impact craters -- they've mostly been obliterated by active geology. Venus, Io, Europa, Titan, and Triton have a similar problem.
On almost all the other solid-surfaced planets in the solar system, impact craters are everywhere. The Moon, in particular, is saturated with them. We use craters to establish relative age dates in two ways. If an impact event was large enough, its effects were global in reach. For example, the Imbrium impact basin on the Moon spread ejecta all over the place. Any surface that has Imbrium ejecta lying on top of it is older than Imbrium. Any craters or lava flows that happened inside the Imbrium basin or on top of Imbrium ejecta are younger than Imbrium.
Imbrium is therefore a stratigraphic marker -- something we can use to divide the chronostratigraphic history of the Moon. The other way we use craters to age-date surfaces is simply to count the craters.
Create your account, risk-free.
At its simplest, surfaces with more craters have been exposed to space for longer, so are older, than surfaces with fewer craters. Of course the real world is never quite so simple. There are several different ways to destroy smaller craters while preserving larger craters, for example.
Despite problems, the method works really, really well. Most often, the events that we are age-dating on planets are related to impacts or volcanism. Volcanoes can spew out large lava deposits that cover up old cratered surfaces, obliterating the cratering record and resetting the crater-age clock.
Geological Time Scale | Earth Science Week
When lava flows overlap, it's not too hard to use the law of superposition to tell which one is older and which one is younger. If they don't overlap, we can use crater counting to figure out which one is older and which one is younger. In this way we can determine relative ages for things that are far away from each other on a planet. Interleaved impact cratering and volcanic eruption events have been used to establish a relative time scale for the Moon, with names for periods and epochs, just as fossils have been used to establish a relative time scale for Earth.
The chapter draws on five decades of work going right back to the origins of planetary geology. The Moon's history is divided into pre-Nectarian, Nectarian, Imbrian, Eratosthenian, and Copernican periods from oldest to youngest. The oldest couple of chronostratigraphic boundaries are defined according to when two of the Moon's larger impact basins formed: There were many impacts before Nectaris, in the pre-Nectarian period including 30 major impact basins , and there were many more that formed in the Nectarian period, the time between Nectaris and Imbrium.
- Radiometric Dating and the Geological Time Scale.
- 7 Geologic Time?
- can you hook up a microphone to a macbook pro!
- GEOLOGICAL TIME.
- tips for dating a female cop!
The Orientale impact happened shortly after the Imbrium impact, and that was pretty much it for major basin-forming impacts on the Moon. I talked about all of these basins in my previous blog post. There was some volcanism happening during the Nectarian and early Imbrian period, but it really got going after Orientale.
Vast quantities of lava erupted onto the Moon's nearside, filling many of the older basins with dark flows. So the Imbrian period is divided into the Early Imbrian epoch -- when Imbrium and Orientale formed -- and the Late Imbrian epoch -- when most mare volcanism happened. People have done a lot of work on crater counts of mare basalts, establishing a very good relative time sequence for when each eruption happened. Mare Ingenii, the "Sea of Cleverness," is a small area of mare basalt dark filling an impact basin that is itself inside the South Pole-Aitken Basin on the Moon's farside.
The basalt has fewer, smaller craters than the adjacent highlands. Even though it is far away from the nearside basalts, geologists can use crater statistics to determine whether it erupted before, concurrently with, or after nearside maria did. Over time, mare volcanism waned, and the Moon entered a period called the Eratosthenian -- but where exactly this happened in the record is a little fuzzy.
Tanaka and Hartmann lament that Eratosthenes impact did not have widespread-enough effects to allow global relative age dating -- but neither did any other crater; there are no big impacts to use to date this time period. Tanaka and Hartmann suggest that the decline in mare volcanism -- and whatever impact crater density is associated with the last gasps of mare volcanism -- would be a better marker than any one impact crater. Most recently, a few late impact craters, including Copernicus, spread bright rays across the lunar nearside. Presumably older impact craters made pretty rays too, but those rays have faded with time.
Rayed craters provide another convenient chronostratigraphic marker and therefore the boundary between the Eratosthenian and Copernican eras. Here is a graphic showing the chronostratigraphy for the Moon -- our story for how the Moon changed over geologic time, put in graphic form. Basins and craters dominate the early history of the Moon, followed by mare volcanism and fewer craters.
Can we put absolute ages on this time scale? Well, we can certainly try.